Revisiting Pivot Language Approach for Machine Translation

نویسندگان

  • Hua Wu
  • Haifeng Wang
چکیده

This paper revisits the pivot language approach for machine translation. First, we investigate three different methods for pivot translation. Then we employ a hybrid method combining RBMT and SMT systems to fill up the data gap for pivot translation, where the sourcepivot and pivot-target corpora are independent. Experimental results on spoken language translation show that this hybrid method significantly improves the translation quality, which outperforms the method using a source-target corpus of the same size. In addition, we propose a system combination approach to select better translations from those produced by various pivot translation methods. This method regards system combination as a translation evaluation problem and formalizes it with a regression learning model. Experimental results indicate that our method achieves consistent and significant improvement over individual translation outputs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Statistical Machine Translation without a Source-side Parallel Corpus Using Word Lattice and Phrase Extension

Statistical machine translation (SMT) requires a parallel corpus between the source and target languages. Although a pivot-translation approach can be applied to a language pair that does not have a parallel corpus directly between them, it requires both source–pivot and pivot–target parallel corpora. We propose a novel approach to apply SMT to a resource-limited source language that has no par...

متن کامل

Improving Arabic-Chinese Statistical Machine Translation using English as Pivot Language

We present a comparison of two approaches for Arabic-Chinese machine translation using English as a pivot language: sentence pivoting and phrase-table pivoting. Our results show that using English as a pivot in either approach outperforms direct translation from Arabic to Chinese. Our best result is the phrase-pivot system which scores higher than direct translation by 1.1 BLEU points. An error...

متن کامل

Statistical Machine Translation without Source-side Parallel Corpus Using Word Lattice and Phrase Extension

Statistical machine translation (SMT) requires a parallel corpus between the source and target languages. Although a pivot-translation approach can be applied to a language pair that does not have a parallel corpus directly between them, it requires both source–pivot and pivot–target parallel corpora. We propose a novel approach to apply SMT to a resource-limited source language that has no par...

متن کامل

Improving Pivot-Based Statistical Machine Translation by Pivoting the Co-occurrence Count of Phrase Pairs

To overcome the scarceness of bilingual corpora for some language pairs in machine translation, pivot-based SMT uses pivot language as a "bridge" to generate source-target translation from sourcepivot and pivot-target translation. One of the key issues is to estimate the probabilities for the generated phrase pairs. In this paper, we present a novel approach to calculate the translation probabi...

متن کامل

Improving Pivot-Based Statistical Machine Translation Using Random Walk

This paper proposes a novel approach that utilizes a machine learning method to improve pivot-based statistical machine translation (SMT). For language pairs with few bilingual data, a possible solution in pivot-based SMT using another language as a "bridge" to generate source-target translation. However, one of the weaknesses is that some useful sourcetarget translations cannot be generated if...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009